Какой тип мышечной ткани образует сердечную мышцу. Мышечная ткань: ее разновидности и значение для человека. Гладкая мышечная ткань

Мышечные ткани - это ткани, отличающиеся по структуре и происхождению, но имеют общую способность к сокращению. Состоят из миоцитов - клеток, которые могут воспринимать нервные импульсы и отвечать на них сокращением.

Свойства и виды мышечной ткани

Морфологические признаки:

  • Вытянутая форма миоцитов;
  • продольно размещены миофибриллы и миофиламенты;
  • митохондрии находятся вблизи сократительных элементов;
  • присутствуют полисахариды, липиды и миоглобин.

Свойства мышечной ткани:

  • Сократимость;
  • возбудимость;
  • проводимость;
  • растяжимость;
  • эластичность.

Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:

  1. Поперечнополосатая: скелетная, сердечная.
  2. Гладкая.

Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:

  • Мезенхимные - десмальный зачаток;
  • эпидермальные - кожная эктодерма;
  • нейральные - нервная пластинка;
  • целомические - спланхнотомы;
  • соматические - миотом.

Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.

Строение и функции гладкой мышечной ткани

Cостоит из отдельных мелких веретеновидных клеток. Эти клетки имеют одно ядро и тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10-12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. Сокращается гладкая мышечная ткань ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления.

У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы, тогда как у позвоночных животных она входит в состав внутренних органов (кроме сердца).

Сокращения этих мышц не зависят от воли человека, т. е. происходят непроизвольно.

Функции гладкой мышечной ткани:

  • Поддерживание стабильного давления в полых органах;
  • регуляция уровня кровяного давления;
  • перистальтика пищеварительного тракта, перемещения по нему содержимого;
  • опорожнение мочевого пузыря.

Строение и функции скелетной мышечной ткани


Cостоит из длинных и толстых волокон длиной 10-12 см. Скелетная мускулатура характеризуется произвольным сокращением (в ответ на импульсы, идущие из коры головного мозга). Скорость ее сокращения в 10-25 раз выше, чем в гладкой мышечной ткани.

Мышечное волокно поперечнополосатой ткани покрыто оболочкой - сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями - миофибриллами. Состоит миофибрилла из последовательно чередующихся темных и светлых участков (дисков), обладающих разным коэффициентом преломления света. С помощью электронного микроскопа установлено, что миофибрилла состоит из протофибрилл. Тонкие протофибриллы построены из белка - актина, аболее толстые - из миозина.

При сокращении волокон происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.

Функции скелетной мышечной ткани:

  • Динамическая - перемещение в пространстве;
  • статическая - поддержание определенной позиции частей тела;
  • рецепторная - проприорецепторы, воспринимающие раздражение;
  • депонирующая - жидкость, минералы, кислород, питательные вещества;
  • терморегуляция - расслабление мышц при повышении температуры для расширения сосудов;
  • мимика - для передачи эмоций.

Строение и функции сердечной мышечной ткани


Сердечная мышечная ткань

Миокард построен из сердечной мышечной и соединительной ткани, с сосудами и нервами. Мышечная ткань относится к поперечнополосатой мускулатуре, исчерченность которой также обусловлена наличием разных типов миофиламентов. Миокард состоит из волокон, которые связаны между собой и формируют сетку. Эти волокна включают одно или двухъядерные клетки, что расположены в виде цепочки. Они получили название сократительных кардиомиоцитов.

Сократительные кардиомиоциты длиной от 50 до 120 микрометров, шириной - до 20 мкм. Ядро здесь располагается в центре цитоплазмы, в отличие от ядер поперечно полосатых волокон. Кардиомиоциты имеют больше саркоплазма и меньше миофибрилл, в сравнении со скелетными мышцами. В клетках сердечной мышцы находится много митохондрий, так как непрерывные сердечные сокращения требуют много энергии.

Вторая разновидность клеток миокарда - это проводящие кардиомиоциты, которые формируют проводящую систему сердца. Проводящие миоциты обеспечивают передачу импульса к сократительным мышечным клеткам.

Функции сердечной мышечной ткани:

  • Насосная;
  • обеспечивает ток крови в кровеносном русле.

Компоненты сократительной системы

Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.

В цитоплазме мышечных клеток имеются особые сократительные нити - миофибриллы, сокращение которых возможно при содружественной работе белков - актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O 2 и формирование его запаса на период сокращения мышцы, так как во время сокращения идет сдавление кровеносных сосудов и снабжение мышц O 2 резко снижается.

Таблица. Соответствие между характеристикой мышечной ткани и ее видом

Вид ткани Характеристика
Гладкомышечная Входит в состав стенок кровеносных сосудов
Структурная единица – гладкий миоцит
Сокращается медленно, неосознанно
Поперечная исчерченность отсутствует
Скелетная Структурная единица – многоядерное мышечное волокно
Свойственна поперечная исчерченность
Сокращается быстро, осознанно

Где находится мышечная ткань?

Гладкие мышцы являются составной частью стенок внутренних органов: желудочно-кишечного тракта, мочеполовой системы, сосудов. Входят в состав капсулы селезенки, кожных покровов, сфинктера зрачка.

Скелетная мускулатуразанимают около 40% от массы тела человека, с помощью сухожилий крепятся к костям. Из этой ткани состоят скелетные мышцы, мышцы рта, языка, глотки, гортани, верхнего участка пищевода, диафрагмы, мимическая мускулатура. Также поперечно полосатые мышцы находится в миокарде.

Чем мышечное волокно скелетной мышцы отличается от гладкой мышечной ткани?

Волокна поперечнополосатых мышц намного длиннее (до 12см), чем клеточные элементы гладкомышечной ткани (0,05-0,4мм). Также скелетные волокна имеют поперечную исчерченность благодаря особому расположению нитей актина и миозина. Для гладких мышц это не характерно.

В мышечных волокнах находится много ядер, а сокращение волокон сильное, быстрое и осознанное. В отличие от гладких мышц, клетки гладкомышечной ткани одноядерные, способны сокращаться в медленном темпе и неосознанно.

Выполняют очень важную функцию в организмах живых существ - формируют и выстилают все органы и их системы. Особое значение среди них имеет именно мышечная, так как ее значение в формировании наружной и внутренней полости всех структурных частей тела приоритетная. В данной статье рассмотрим, что собой представляет гладкая мышечная ткань, особенности строения ее, свойства.

Разновидности данных тканей

В составе животного организма имеется немного типов мышц:

  • поперечно полосатая;
  • гладкая мышечная ткань.

Обе они имеют свои характеристические черты строения, выполняемые функции и проявляемые свойства. Кроме того, их легко различить между собой. Ведь и та и другая имеют свой неповторимый рисунок, формирующийся благодаря входящим в состав клеток белковым компонентам.

Поперечнополосатая также подразделяется на два основных вида:

  • скелетная;
  • сердечная.

Само название отражает основные области расположения в организме. Ее функции чрезвычайно важны, ведь именно эта мускулатура обеспечивает сокращение сердца, движение конечностей и всех остальных подвижных частей тела. Однако, и гладкая мускулатура не менее значима. В чем заключаются ее особенности, рассмотрим дальше.

В целом можно заметить, что только слаженная работа, которую выполняет гладкая и поперечнополосатая мышечные ткани, позволяет всему организму успешно функционировать. Поэтому определить более или менее значимую из них невозможно.

Гладкая особенности строения

Основные необычные черты рассматриваемой структуры заключаются в строении и составе ее клеток - миоцитов. Как и любая другая, эта ткань образована группой клеток, схожих по строению, свойствам, составу и выполняемым функциям. Общие особенности строения можно обозначить в нескольких пунктах.

  1. Каждая клетка окружена плотным сплетением соединительнотканных волокон, что выглядит, словно капсула.
  2. Каждая структурная единица плотно прилегает к другой, межклетники практически отсутствуют. Это позволяет всей ткани быть плотноупакованной, структурированной и прочной.
  3. В отличие от поперечнополосатой коллеги, данная структура может включать в свой состав неодинаковые по форме клетки.

Это, конечно, не вся характеристика, которую имеет Особенности строения, как уже оговаривалось, заключаются именно в самих миоцитах, их функционировании и составе. Поэтому ниже этот вопрос будет рассмотрен подробнее.

Миоциты гладкой мускулатуры

Миоциты имеют разную форму. В зависимости от локализации в том или ином органе, они могут быть:

  • овальными;
  • веретеновидными удлиненными;
  • округлыми;
  • отростчатыми.

Однако в любом случае общий состав их сходен. Они содержат такие органоиды, как:

  • хорошо выраженные и функционирующие митохондрии;
  • комплекс Гольджи;
  • ядро, чаще вытянутое по форме;
  • эндоплазматический ретикулум;
  • лизосомы.

Естественно, и цитоплазма с обычными включениями также присутствует. Интересен факт, что миоциты гладкой мускулатуры снаружи покрыты не только плазмолеммой, но и мембраной (базальной). Это обеспечивает им дополнительную возможность для контакта друг с другом.

Эти места соприкосновения составляют особенности гладкой мышечной ткани. Места контактов именуются нексусами. Именно через них, а также через поры, которые в этих местах имеются в мембране, происходит передача импульсов между клетками, обмен информацией, молекулами воды и другими соединениями.

Есть еще одна необычная черта, которую имеет гладкая мышечная ткань. Особенности строения ее миоцитов в том, что не все из них имеют нервные окончания. Поэтому настолько важны нексусы. Чтобы ни одна клетка не осталась без иннервации, и импульс мог передаться через соседнюю структуру по ткани.

Существует два основных типа миоцитов.

  1. Секреторные. Их основная функция заключается в выработке и накоплении гранул гликогена, сохранении множества митохондрий, полисом и рибосомальных единиц. Свое название эти структуры получили из-за белков, содержащиеся в них. Это актиновые филаменты и сократительные фибриновые нити. Данные клетки чаще всего локализуются по периферии ткани.
  2. Гладкие Имеют вид веретеновидных удлиненных структур, содержащих овальное ядро, смещенное к середине клетки. Другое название лейомиоциты. Отличаются тем, что имеют более крупные размеры. Некоторые частицы маточного органа достигают 500 мкм! Это достаточно значительная цифра на фоне всех остальных клеток в организме, больше разве что яйцеклетка.

Функция гладких миоцитов состоит также в том, что они синтезируют следующие соединения:

  • гликопротеиды;
  • проколлаген;
  • эластаны;
  • межклеточное вещество;
  • протеогликаны.

Совместное взаимодействие и слаженная работа обозначенных типов миоцитов, а также их организация обеспечивают строение гладкой мышечной ткани.

Происхождение данной мускулатуры

Источник образования данного типа мускулатуры в организме не один. выделяют три основных варианта происхождения. Именно этим и объясняется различия, которые имеет строение гладкой мышечной ткани.

  1. Мезенхимное происхождение. такое имеет большая часть гладких волокон. Именно из мезенхими образуются практически все ткани, выстилающие внутреннюю часть полых органов.
  2. Эпидермальное происхождение. Само название говорит о местах локализации - это все кожные железы и их протоки. Именно они образованы гладкими волокнами, имеющими такой вариант появления. Потовые, слюнные, молочные, слезные - все эти железы выделяют свой секрет, благодаря раздражению клеток миоэпителиоцитов - структурных частичек рассматриваемого органа.
  3. Нейральное происхождение. Такие волокна локализуются в одном определенном месте - это радужка, одна из оболочек глаза. Сокращение или расширение зрачка иннервируется и управляется именно этими клетками гладкой мускулатуры.

Несмотря на разное происхождение, внутренний состав и выполняемые свойства всех в рассматриваемой ткани остаются примерно одинаковыми.

Основные свойства данной ткани

Свойства гладкой мышечной ткани соответствуют таковым и для поперечнополосатой. В этом они едины. Это:

  • проводимость;
  • возбудимость;
  • лабильность;
  • сократимость.

При этом существует и одна достаточно специфичная особенность. Если поперечнополосатая скелетная мускулатура способна быстро сокращаться (это хорошо иллюстрирует дрожь в теле человека), то гладкая может долго удерживаться в сжатом состоянии. Кроме того, ее деятельность не подчиняется воле и разуму человека. Так как иннервирует ее

Очень важным свойством является способность к длительному медленному растяжению (сокращению) и такому же расслаблению. Так, на этом основана работа мочевого пузыря. Под действием биологической жидкости (ее наполнением) он способен растягиваться, а затем сокращаться. Стенки его выстланы именно гладкой мускулатурой.

Белки клеток

Миоциты рассматриваемой ткани содержат много разных соединений. Однако наиболее важными из них, обеспечивающими выполнение функций сокращения и расслабления, являются именно белковые молекулы. Из них здесь содержатся:

  • миозиновые нити;
  • актин;
  • небулин;
  • коннектин;
  • тропомиозин.

Эти компоненты обычно располагаются в цитоплазме клеток изолированно друг от друга, не образуя скоплений. Однако в некоторых органах у животных формируются пучки или тяжи, именуемые миофибриллами.

Расположение в ткани этих пучков в основном продольное. Причем как миозиновых волокон, так и актиновых. В результате образуется целая сеть, в которой концы одних сплетаются с краями других белковых молекул. Это важно для быстрого и правильного сокращения всей ткани.

Само сокращение происходит так: в составе внутренней среды клетки есть пиноцитозные пузырьки, в которых обязательно содержатся ионы кальция. Когда поступает нервный импульс, говорящий о необходимости сокращения, этот пузырек подходит к фибрилле. В результате ион кальция раздражает актин и он продвигается глубже между нитями миозина. Это приводит к затрагиванию плазмалеммы и в результате миоцит сокращается.

Гладкая мышечная ткань: рисунок

Если говорить о поперечнополосатой ткани, то ее легко узнать по исчерченности. Но вот что касается рассматриваемой нами структуры, то такого не происходит. Почему гладкая мышечная ткань рисунок имеет совсем иной, нежели близкая ей соседка? Это объясняется наличием и расположением белковых компонентов в миоцитах. В составе гладкой мускулатуры нити миофибрилл разной природы локализуются хаотично, без определенного упорядоченного состояния.

Именно поэтому рисунок ткани просто отсутствует. В поперечнополосатой нити актина последовательно сменяются поперечным миозином. В результате возникает рисунок - исчерченность, благодаря которой ткань и получила свое название.

Под микроскопом гладкая ткань выглядит очень ровной и упорядоченной, благодаря плотно прилегающим друг к другу продольно расположенным вытянутым миоцитам.

Области пространственного расположения в организме

Гладкая мышечная ткань образует достаточно большое количество важных внутренних органов в животном теле. Так, ей образованы:

  • кишечник;
  • половые органы;
  • кровеносные сосуды всех типов;
  • железы;
  • органы выделительной системы;
  • дыхательные пути;
  • части зрительного анализатора;
  • органы пищеварительной системы.

Очевидно, что места локализации рассматриваемой ткани крайне разнообразны и важны. Кроме того, следует заметить, что такая мускулатура формирует в основном те органы, которые подвержены автоматии в управлении.

Способы восстановления

Гладкая мышечная ткань образует достаточно важные структуры, что иметь способность к регенерации. Поэтому для нее характерны два основных пути восстановления при повреждениях различного рода.

  1. Митотическое деление миоцитов до образования нужного количества ткани. Самый распространенный простой и быстрый способ регенерации. Так происходит восстановление внутренней части любого органа, образованного гладкой мускулатурой.
  2. Миофибробласты способны трансформироваться в миоциты гладкой ткани при необходимости. Это более сложный и редко встречаемый путь регенерации данной ткани.

Иннервация гладкой мускулатуры

Гладкая свои выполняет независимо от желания или нежелания живого существа. Это происходит оттого, что ее иннервацию осуществляет вегетативная нервная система, а также отростки нервов ганглиев (спинальных).

Примером этому и доказательством может служить сокращение или увеличение размеров желудка, печени, селезенки, растяжение и сокращение мочевого пузыря.

Функции гладкой мышечной ткани

Каково же значение этой структуры? Зачем нужна ее следующие:

  • длительное сокращение стенок органов;
  • выработка секретов;
  • способность отвечать на раздражения и воздействия возбудимостью.

Ткань - это совокупность схожих по строению клеток, которые объединены общими функциями. Практически все состоят из разных типов тканей.

Классификация

У животных и человека в организме присутствуют следующие типы тканей:

  • эпителиальная;
  • нервная;
  • соединительная;
  • мышечная.

Эти группы объединяют по несколько разновидностей. Так, соединительная ткань бывает жировой, хрящевой, костной. Также сюда относятся кровь и лимфа. Эпителиальная ткань существует многослойная и однослойная, в зависимости от строения клеток можно выделить также плоский, кубический, цилиндрический эпителий и т. д. Нервная бывает только одного вида. А о мы поговорим подробнее в этой статье.

Виды мышечной ткани

В организме всех животных выделяют три ее разновидности:

  • поперечно-полосатые мышцы;
  • сердечная мышечная ткань.

Функции гладкой мышечной ткани отличаются от таковых у поперечно-полосатой и сердечной, поэтому другое у нее и строение. Давайте рассмотрим подробнее структуру каждого вида мускулатуры.

Общая характеристика мышечных тканей

Так как все три вида относятся к одному типу, у них есть много общего.

Клетки мышечной ткани называются миоцитами, или волокнами. В зависимости от разновидности ткани, они могут иметь различную структуру.

Еще одним общим признаком всех видов мышц является то, что они способны сокращаться, однако у разных видов этот процесс происходит индивидуально.

Особенности миоцитов

Клетки гладкой мышечной ткани, как и поперечно-полосатой и сердечной, обладают вытянутой формой. Кроме того, в них есть особые органоиды, которые называются миофибриллы, или миофиламенты. В них содержатся (актин, миозин). Они необходимы для того, чтобы обеспечить движение мышцы. Обязательным условием функционирования мускула, кроме наличия сократительных белков, также является присутствие в клетках ионов кальция. Поэтому недостаточное или избыточное употребление продуктов с высоким содержанием данного элемента может привести к некорректной работе мускулатуры - как гладкой, так и поперечно-полосатой.

Кроме того, в клетках присутствует еще один специфический белок - миоглобин. Он необходим для того, чтобы связываться с кислородом и запасать его.

Что касается органоидов, то кроме наличия миофибрилл особенным для мышечных тканей является содержание большого количества в клетке митохондрий - двумембранных органоидов, отвечающих за клеточное дыхание. И это неудивительно, так как мышечному волокну для сокращения необходимо большое количество энергии, вырабатываемой при дыхании митохондриями.

В некоторых миоцитах также присутствует более чем одно ядро. Это характерно для поперечно-полосатой мускулатуры, в клетках которой может содержаться около двадцати ядер, а иногда эта цифра доходит и до ста. Это связано с тем, что волокно поперечно-полосатой мышцы сформировано из нескольких клеток, объединенных впоследствии в одну.

Строение поперечно-полосатых мышц

Данный тип ткани еще называют скелетной мускулатурой. Волокна этого типа мышц длинные, собранные в пучки. Их клетки могут достигать нескольких сантиметров в длину (вплоть до 10-12). В них содержится много ядер, митохондрий и миофибрилл. Основная структурная единица каждой миофибриллы поперечно-полосатой ткани - саркомер. Он состоит из сократительного белка.

Главная особенность этой мускулатуры заключается в том, что она может контролироваться сознательно, в отличие от гладкой и сердечной.

Волокна данной ткани прикрепляются к костям с помощью сухожилий. Именно поэтому такие мышцы и называются скелетными.

Структура гладкой мышечной ткани

Гладкие мышцы выстилают некоторые внутренние органы, такие как кишечник, матка, мочевой пузырь, а также сосуды. Кроме того, из них формируются сфинктеры и связки.

Гладкое мышечное волокно не такое длинное, как поперечно-полосатое. Но толщина его больше, чем в случае со скелетными мускулами. Клетки гладкой мышечной ткани обладают веретоноподобной формой, а не нитевидной, как миоциты поперечно-полосатой.

Структуры, которые обесечивают сокращение гладких мышц, называются протофибриллами. В отличие от миофибрилл, они обладают более простой структурой. Но материал, из которого они построены, - все те же сократительные белки актин и миозин.

Митохондрий в миоцитах гладкой мускулатуры также меньше, чем в клетках поперечно-полосатой и сердечной. Кроме того, в них содержится только одно ядро.

Особенности сердечной мышцы

Некоторые исследователи определяют ее как подвид поперечно-полосатой мышечной ткани. Их волокна и вправду во многом похожи. Клетки сердца - кардиомиоциты - также содержат несколько ядер, миофибриллы и большое количество митохондрий. Данная ткань, как и способна сокращаться намного быстрее и сильнее, нежели гладкая мускулатура.

Однако основной особенностью, отличающей сердечную мышцу от поперечно-полосатой, является то, что она не может контролироваться сознательно. Сокращение ее происходит только автоматически, как и в случае с гладкими мышцами.

В составе сердечной ткани, кроме типичных клеток, присутствуют также секреторные кардиомиоциты. Они не содержат в себе миофибрилл и не сокращаются. Эти клетки отвесают за выработку гормона атриопептина, который необходим для регуляции артериального давления и контроля объема циркулирующей крови.

Функции поперечно-полосатых мышц

Основная их задача - перемещение тела в пространстве. Также это перемещение частей тела относительно друг друга.

Из других функций поперечно-полосатых мышц можно отметить поддержание позы, депо воды и солей. Кроме того, они выполняют защитную роль, что особенно касается мышц брюшного пресса, предотвращающих механическое повреждение внутренних органов.

К функциям поперечно-полосатой мускулатуры можно также причислить регуляцию температуры, так как при активном сокращении мышц происходит выделение значительного количества тепла. Вот почему при перемерзании мышцы начинают непроизвольно дрожать.

Функции гладкой мышечной ткани

Мускулатура данного вида выполняет эвакуаторную функцию. Она заключается в том, что гладкие мышцы кишечника проталкивают каловые массы к месту их выведения из организма. Также эта роль проявляется при родах, когда гладкие мышцы матки выталкивают плод из органа.

Функции гладкой мышечной ткани этим не ограничиваются. Также немаловажна их сфинктерная роль. Из ткани данного вида формируются специальные круговые мышцы, которые могут смыкаться и размыкаться. Сфинктеры присутствуют в мочевых путях, в кишечнике, между желудком и пищеводом, в желчном пузыре, в зрачке.

Еще одна важная роль, которую играют гладкие мышцы, - формирование связочного аппарата. Он необходим для поддержания правильного положения внутренних органов. При понижении тонуса этих мышц может происходить опущение некоторых органов.

На этом функции гладкой мышечной ткани заканчиваются.

Предназначение сердечной мышцы

Здесь, в принципе, особо говорить не о чем. Основная и единственная функция этой ткани - обеспечение циркуляции крови в организме.

Вывод: различия между тремя видами мышечной ткани

Для раскрытия этого вопроса представляем таблицу:

Гладкая мускулатура Поперечно-полосатые мышцы Сердечная мышечная ткань
Сокращается автоматически Может контролироваться сознательно Сокращается автоматически
Клетки удлинненные, веретеноподобные Клетки длинные, нитевидные Удлинненные клетки
Волокна не объединяются в пучки Волокна объединяются в пучки Волокна объединяются в пучки
Одно ядро в клетке Несколько ядер в клетке Несколько ядер в клетке
Сравнительно небольшое количество митохондрий Большое количество митохондрий
Отсутствуют миофибриллы Присутствуют миофибриллы Есть миофибриллы
Клетки способны делиться Волокна не могут делиться Клетки не могут делиться
Сокращаются медленно, слабо, ритмично Сокращаются быстро, сильно Сокращаются быстро, сильно, ритмично
Выстилают внутренние органы (кишечник, матка, мочевой пузырь), формируют сфинктеры Крепятся к скелету Формируют сердце

Вот и все основные характеристики поперечно-полосатой, гладкой и сердечной мышечных тканей. Теперь вы ознакомлены с их функциями, строением и главными различиями и сходствами.

Мышечные ткани классифицируются на гладкую и исчерченную или поперечнополосатую. Поперечнополосатая подразделяется на скелетную и сердечную. В зависимости от происхождения мышечные ткани делятся на 5 типов:

мезенхимные (гладкая мышечная ткань);

эпидермальные (гладкая мышечная ткань);

нейральные (гладкая мышечная ткань);

целомические (сердечная);

соматические или миотомные (скелетная поперечнополосатая).

ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ, РАЗВИВАЮЩАЯСЯ ИЗ СПЛАНХНОТОМНОЙ МЕЗЕНХИМЫ

локализуется в стенках полых органов (желудка, кровеносных сосудах, дыхательных путях и др.) и неполых органах (в мышце ресничного тела глаза млекопитающих). Клетки гладкой мышечной ткани развиваются из мезенхимоцитов, которые утрачивают отростки. В них развиваются комплекс Гольджи, митохондрии, гранулярная ЭПС и миофиламенты. В это время на гранулярной ЭПС активно синтезируется коллаген V типа, за счет которого вокруг клетки формируется базальная мембрана. При дальнейшей дифференцировке органеллы общего значения атрофируются, снижается синтез молекул коллагена в клетке, но повышается синтез сократительных белков миофиламентов.

СТРОЕНИЕ ГЛАДКОЙ МЫШЕЧНОЙ ТКАНИ . Она состоит из гладких миоцитов, имеющих веретеновидную форму, длиной от 20 до 500 мкм. диаметром 6-8 мкм. Снаружи миоциты покрыты плазмолеммой и базальной мембраной.

Миоциты плотно прилежат друг к другу. Между ними имеются контакты - нексусы. В том месте, где имеются нексусы, в базальной мембране оболочки миоцитов есть отверстия. В этом месте плазмолемма одного миоцита приближается к плазмолемме другого миоцита на расстояние 2-3 нм. Через нексусы происходит обмен ионов, транспорт молекул воды, передача сократительного импульса.

Снаружи миоциты покрыты коллагеном V типа, образующим экзоцитоскелет клетки. Цитоплазма миоцитов окрашивается оксифильно. В ней содержатся слабо развитые органеллы общего значения: гранулярная ЭПС, комплекс Гольджи, гладкая ЭПС, клеточный центр, лизосомы. Эти органеллы располагаются у полюсов ядра. Хорошо развитые органеллы - митохондрии. Ядра имеют палочковидную форму.

В миоцитах хорошо развиты миофиламенты, являющиеся сократительным аппаратом клеток. Среди миофиламентов имеются

тонкие, актиновые, состоящие из белка актина;

толстые миозиновые, состоящие из сократительного белка миозина, которые появляются только после поступления к клетке импульса;

промежуточные филаменты, состоящие из коннектина и небулина.

В миоцитах отсутствует исчерченность потому, что все вышеперечисленные филаменты расположены неупорядоченно.

АКТИНОВЫЕ ФИЛАМЕНТЫ соединяются друг с другом и с плазмолеммой при помощи плотных телец. В тех местах, где они соединяются друг с другом, в тельцах содержится альфа-актинин; в тех местах, где филаменты соединяются с плазмолеммой - в тельцах содержится винкулин. Расположение актиновых филаментов преимущественно продольное, но они могут располагаться под углом по отношению к продольной оси. Миозиновые филаменты тоже располагаются преимущественно продольно. Филаменты располагаются так, что концы актиновых располагаются между концами миозиновых филаментов.

ФУНКЦИЯ ФИЛАМЕНТОВ - сократительная. Процесс сокращения осуществляется следующим образом: после поступления сократительного импульса пиноцитозные пузырьки, содержащие ионы кальция, приближаются к филаментам; ионы кальция запускают сократительный процесс, который заключается в том, что концы актиновых филаментов продвигаются глубже между концами миозиновых филаментов. Сила тяги прилагается к плазмолемме, с которой актиновые филаменты связаны при помощи плотных телец, в результате этого миоцит сокращается.

ФУНКЦИИ МИОЦИТОВ : 1) сократительная (способность к длительному сокращению); 2) секреторная (секретируют коллаген V типа, эластин, протеогликаны, так как имеют гранулярную ЭПС).

РЕГЕНЕРАЦИЯ гладкой мышечной ткани осуществляется 2 путями: 1) митотическое деление миоцитов; 2) преобразование в гладкие миоциты миофибробластов.

СТРОЕНИЕ ГЛАДКОЙ МЫШЕЧНОЙ ТКАНИ КАК ОРГАНА . В стенке полых органов гладкие миоциты образуют пучки. Эти пучки окружены прослойками рыхлой соединительной ткани, которая называется перимизием. Прослойка соединительной ткани вокруг всего пласта мышечной ткани называется эпимизием. В перимизии и эпимизии проходят кровеносные и лимфатические сосуды и нервные волокна.

ИННЕРВАЦИЯ ГЛАДКОЙ МЫШЕЧНОЙ ТКАНИ осуществляется вегетативной нервной системой, поэтому сокращения гладкой мускулатуры не подчиняются воле человека (непроизвольные). К гладкой мышечной ткани подходят чувствительные (афферентные) и двигательные (эфферентные) нервные волокна. Эфферентные нервные волокна заканчиваются двигательными нервными окончаниями в прослойке соединительной ткани. При поступлении импульса из окончаний выделяются медиаторы, которые, диффузно распространяясь, достигают миоцитов, вызывая их сокращение.

ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ ЭПИДЕРМАЛЬНОГО ПРОИСХОЖДЕНИЯ находится в концевых отделах и мелких протоках желез, которые развиваются из кожной эктодермы (слюнные, потовые, молочные и слезные железы). Гладкие миоциты (миоэпителиоциты) располагаются между базальной поверхностью железистых клеток и базальной мембраной, охватывая базальную часть гландулоцитов своими отростками. При сокращении этих отростков сдавливается базальная часть гландулоцитов, благодаря чему из железистых клеток выделяется секрет.

ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ НЕЙРАЛЬНОГО ПРОИСХОЖДЕНИЯ развивается из глазных бокалов, вырастающих из нервной трубки. Эта мышечная ткань образует всего 2 мышцы, расположенные в радужной оболочке глаза: мышцу суживающую зрачок и мышцу расширяющую зрачок. Существует мнение, что мышцы радужки развиваются из нейроглии.

ПОПЕРЕЧНОПОЛОСАТАЯ СКЕЛЕТНАЯ МЫШЕЧНАЯ ТКАНЬ развивается из миотомов мезодермальных сомитов, поэтому называется соматической. Клетки миотомов дифференцируются в двух направлениях: 1) из одних образуются миосателлитоциты; 2) из других образуются миосимпласты.

ОБРАЗОВАНИЕ МИОСИМПЛАСТОВ . Клетки миотомов дифференцируются в миобласты, которые сливаются вместе и образуются мышечные трубочки. В процессе созревания мышечные трубочки превращаются в миосимпласты. При этом ядра смещаются к периферии, а миофибриллы - к центру.

СТРОЕНИЕ МЫШЕЧНОГО ВОЛОКНА . Мышечное волокно (miofibra) состоит из 2 компонентов: 1) миосателлитоцитов и 2) миосимпласта. Мышечное волокно имеет примерно такую же длину, как и сама мышца, диаметр - 20-50 мкм. Волокно снаружи покрыто оболочкой - сарколеммой, состоящей из 2 мембран. Наружная мамбрана называется базальной мембраной, а внутренняя - плазмолеммой. Между этими двумя мембранами располагаются миосателлитоциты.

ЯДРА МЫШЕЧНЫХ ВОЛОКОН располагаются под плазмолеммой, их количество может достигать нескольких десятков тысяч. Имеют вытянутую форму, не обладают способностью к дальнейшему митотическому делению. ЦИТОПЛАЗМА мышечного волокна называется САРКОПЛАЗМОЙ. В саркоплазме содержится большое количество миоглобина, включений гликогена и липидов; имеются органеллы общего значения, одни из которых развиты хорошо, другие - хуже. Такие органеллы как комплекс Гольджи, гранулярная ЭПС, лизосомы развиты слабо и располагаются у полюсов ядер. Хорошо развиты митохондрии и гладкая ЭПС.

В мышечных волокнах хорошо развиты миофибриллы, являющиеся сократительным аппаратом волокна. В миофибриллах имеется исчерченность потому, что миофиламенты в них расположены в строго определенном порядке (в отличии от гладкой мускулатуры). В миофибриллах 2 вида миофиламентов: 1) тонкие актиновые, состоят из белка актина, тропонина и тропомиозина; 2) толстые миозиновые состоят из белка миозина. Актиновые филаменты располагаются продольно, их концы находятся на одинаковом уровне и несколько заходят между концами миозиновых филаментов. Вокруг каждого миозинового филамента расположено 6 концов актиновых филаментов. В мышечном волокне имеется цитоскелет, включающий промежуточные нити (филаменты), телофрагму, мезофрагму, сарколемму. Благодаря цитоскелету одинаковые структуры миофибрилл (актиновые, миозиновые филаменты и др.) располагаются упорядоченно.

Тот участок миофибриллы, в котором находятся только актиновые филаменты, называется диском I (изотропный или светлый диск). Через центр диска I проходит Z-полоска, или телофрагма толщиной около 100 нм и состоящая из альфа-актинина. К телофрагме прикрепляются актиновые нити (зона прикрепления тонких нитей).

Миозиновые филаменты тоже располагаются в строго определенном порядке. Их концы также находятся на одном уровне. Миозиновые филаменты вместе с заходящими между ними концами актиновых филаментов образуют диск А (анизотропный диск, обладающий двулучепреломлением). Диск А также разделяется мезофрагмой, аналогичной телофрагме и состоящей из М-белка (миомизина).

В средней части диска А имеется Н-полоска, ограниченная концами актиновых филаментов, заходящих между концами миозиновых нитей. Поэтому чем ближе концы актиновых филаментов расположены друг к другу, тем уже Н-полоска.

САРКОМЕР - это структурная и функциональная единица миофибрилл, представляющая собой участок, расположенный между двумя телофрагмами. Формула саркомера: 1,5 диска I + диск А + 1,5 диска I. Миофибриллы окружены хорошо развитыми митохондриями и хорошо развитой гладкой ЭПС.

ГЛАДКАЯ ЭПС образует систему L-канальцев, образующих в каждом диске сложные структуры. Эти структуры состоят из L-канальцев расположенных вдоль миофибрилл и соединяющихся с поперечно направленными L-канальцами (латеральными цистернами). ФУНКЦИИ гладкой ЭПС (системы L-канальцев): 1) транспортная; 2) синтез липидов и гликогена; 3) депонирование ионов кальция.

Т-КАНАЛЫ - это впячивания плазмолеммы. На границе дисков из плазмолеммы вглубь волокна происходит впячивание в виде трубочки, располагающейся между двумя латеральными цистернами.

ТРИАДА включает: 1) Т-канал и 2) 2 латеральные цистерны гладкой ЭПС. ФУНКЦИЯ ТРИАД заключается в том, что в расслабленном состоянии миофибрилл в латеральных цистернах накапливаются ионы кальция; в тот момент, когда по плазмолемме движется импульс (потенциал действия), он переходит на Т-каналы. При движении импульса по Т-каналу из латеральных цистерн выходят ионы кальция. Без ионов кальция невозможно сокращение миофибрилл, потому что в актиновых филаментах центры взаимодействия с миозиновыми нитями заблокированы тропомиозином. Ионы кальция осуществляют разблокирование этих центров, после чего начинается взаимодействие актиновых нитей с миозиновыми и начинается сокращение.

МЕХАНИЗМ СОКРАЩЕНИЯ МИОФИБРИЛЛ . При взаимодействии актиновых филаментов с миозиновыми происходит разблокирование ионами Са центров сцепления актиновых филаментов с головками молекул миозина, после чего эти выросты присоединяются к центрам сцепления на актиновых нитях и как веслом осуществляют движение актиновых филаментов между концами миозиновых. В это время телофрагма приближается к концам миозиновых филаментов, поскольку концы актиновых филаментов тоже приближаются к мезофрагме и друг к другу, постольку происходит сужение Н-полоски. Таким образом, во время сокращения миофибрилл происходит сужение диска I и Н-полоски. После прекращения потенциала действия ионы кальция возвращаются в L-канальцы гладкой ЭПС, тропомиозин снова блокирует в актиновых филаментах центры взаимодействия с миозиновыми нитями. Это приводит к прекращению сокращения миофибрилл, происходит их расслабление, т.е. актиновые нити возвращаются в исходное положение, восстанавливается ширина диска I и Н-полоски.

МИОСАТЕЛЛИТОЦИТЫ мышечного волокна располагаются между базальной мембраной и плазмолеммой сарколеммы. Эти клетки имеют овальную форму, их овальное ядро окружено тонким слоем бедной органеллами и слабо окрашиваемой цитоплазмы. ФУНКЦИЯ миосателлитоцитов - это камбиальные клетки, участвующие в регенерации мышечных волокон при их повреждении.

СТРОЕНИЕ МЫШЦЫ КАК ОРГАНА . Каждая мышца тела человека представляет собой своеобразный орган, имеющий свою структуру. Каждая мышца состоит из мышечных волокон. Каждое волокно окружено тонкой прослойкой рыхлой соединительной ткани - эндомизием. В эндомизии проходят кровеносные и лимфатические сосуды и нервные волокна. Мышечное волокно вместе с сосудами и нервными волокнами называется "мион". Несколько мышечных волокон образуют пучок, окруженный слоем рыхлой соединительной ткани, называемой перимизием. Вся мышца окружена прослойкой соединительной ткани, называемой эпимизием.

СВЯЗЬ МЫШЕЧНЫХ ВОЛОКОН С КОЛЛАГЕНОВЫМИ ВОЛОКНАМ СУХОЖИЛИЙ .

На концах мышечных волокон имеются впячивания сарколеммы. В эти впячивания входят коллагеновые и ретикулярные волокна сухожилий. Ретикулярные волокна прободают базальную мембрану и при помощи молекулярных сцеплений соединяются с плазмолеммой. Затем эти волокна возвращаются в просвет впячивания и оплетают коллагеновые волокна сухожилия, как бы привязывая их к мышечному волокну. Коллагеновые волокна образуют сухожилия, которые прикрепляются к костному скелету.

ТИПЫ МЫШЕЧНЫХ ВОЛОКОН. Имеется 2 основных типа мышечных волокон:

I тип (красные волокна) и II тип (белые волокна). Они различаются главным образом по быстроте сокращения, содержанию миоглобина, гликогена и активности ферментов.

1-й ТИП (красные волокна) характеризуются большим содержанием миоглобина (поэтому они красные), высокой активностью сукцинатдегидрогеназы, АТФ-азой медленного типа, не столь богатым содержанием гликогена, длительностью сокращения и малой утомляемостью.

2-й ТИП (белые волокна) отличаются малым содержанием миоглобина, низкой активностью сукцинатдегидрогеназы, АТФ-азой быстрого типа, богатым содержанием гликогена, быстрым сокращением и большой утомляемостью.

Медленный (красный) и быстрый (белый) тип мышечных волокон иннервируются разными типами моторных нейронов: медленным и быстрым. Кроме 1-го и 2-го типов мышечных волокон имеются промежуточные, обладающие свойствами тех и других.

В каждой мышце имеются все типы мышечных волокон. Их количество может меняться и зависит от физической нагрузки.

РЕГЕНЕРАЦИЯ ПОПЕРЕЧНОПОЛОСАТОЙ СКЕЛЕТНОЙ МЫШЕЧНОЙ ТКАНИ . При повреждении (разрыве) мышечных волокон их концы на месте повреждения подвергаются некрозу. После разрыва к обрывкам волокон поступают макрофаги, которые фагоцитируют некротизированные участки, очищая их от мертвой ткани. После этого процесс регенерации осуществляется 2 путями: 1) за счет повышения реактивности в мышечных волокнах и образования мышечных почек в местах разрыва; 2) за счет миосателлитоцитов.

1-й ПУТЬ характеризуется тем, что на концах разорванных волокон гипертрофируется гранулярная ЭПС, на поверхности которой синтезируются белки миофибрилл, мембранных структур внутри волокна и сарколеммы. В результате этого концы мышечных волокон утолщаются и преобразуются в мышечные почки. Эти почки по мере их увеличения приближаются друг к другу от одного оборванного конца к другому, наконец почки соединяются и срастаются. Между тем за счет клеток эндомизия происходит новообразование соединительной ткани между растущими навстречу друг к другу мышечными почками. Поэтому к моменту соединения мышечных почек формируется соединительнотканная прослойка, которая войдет в состав мышечного волокна. Следовательно, формируется соединительнотканный рубец.

2-й ПУТЬ регенерации заключается в том, что миосателлитоциты покидают места своего обитания и подвергаются дифференцировке, в результате которой превращаются в миобласты. Часть миобластов присоединяется к мышечным почкам, часть соединяется в мышечные трубочки, которые дифференцируются в новые мышечные волокна.

Таким образом, при репаративной регенерации мышц восстанавливаются старые мышечные волокна и образуются новые.

ИННЕРВАЦИЯ СКЕЛЕТНОЙ МЫШЕЧНОЙ ТКАНИ осуществляется двигательными и чувствительными нервными волокнами, заканчивающимися нервными окончаниями. ДВИГАТЕЛЬНЫЕ (моторные) нервные окончания являются концевыми приборами аксонов моторных нервных клеток передних рогов спинного мозга. Конец аксона, подходя к мышечному волокну делится на несколько веточек (терминалей). Терминали прободают базальную мембрану сарколеммы и далее погружаются вглубь мышечного волокна, увлекая за собой плазмолемму. В результате этого образуется нервномышечное окончание (моторная бляшка).

СТРОЕНИЕ НЕРВНОМЫШЕЧНОГО окончания . В нервномышечном окончании имеется две части (полюса): нервная и мышечная. Между нервной и мышечной частями имеется синаптическая щель. В нервной части (терминалях аксона моторного нейрона) имеются митохондрии и синаптические пузырьки, заполненные медиатором-ацетилхолином. В мышечной части нервномышечного окончания есть митохондрии, скопление ядер, отсутствуют миофибриллы. Синаптическая щель шириной 50 нм ограничена пресинаптической мембраной (плазмолеммой аксона) и постсинаптической мембраной (плазмолеммой мышечного волокна). Постсинаптическая мембрана образует складки (вторичные синаптические щели), на ней имеются рецепторы к ацетилхолину и фермент - ацетилхолинэстераза..

ФУНКЦИЯ нервно-мышечных окончаний . Импульс движется по плазмолемме аксона (пресинаптической мембране). В это время синаптические пузырьки с ацетилхолином подходят к плазмолемме, из пузырьков ацетилхолин изливается в синаптическую щель и захватывается рецепторами постсинаптической мембраны. Это повышает проницаемость этой мембраны (плазмолеммы мышечного волокна), в результате этого ионы натрия с наружной поверхности плазмолеммы переходят на внутреннюю, а ионы калия переходят на наружную поверхность - это и есть волна деполяризации или нервный импульс (потенциал действия). После возникновения потенциала действия ацетилхолинэстераза постсинаптической мембраны разрушает ацетилхолин и прекращается переход импульса через синаптическую щель.

ЧУВСТВИТЕЛЬНЫМИ НЕРВНЫМИ ОКОНЧАНИЯМИ (нервно-мышечными веретенами - fusi neuro-muscularis) заканчиваются дендриты чувствительных нейронов спинномозговых узлов. Нервно-мышечные веретена покрыты соединительнотканной капсулой, внутри которой имеются 2 типа интрафузальных (внутриверетенных) мышечных волокон: 1) с ядерной сумкой (в центре волокна утолщение, в котором имеется скопление ядер), они более длинные и более толстые; 2) с ядерной цепочкой (ядра ввиде цепочки располагаются по центру волокна), они тоньше и короче.

В окончания проникают толстые нервные волокна, которые кольцеобразно оплетают оба вида интрафузальных мышечных волокон и тонкие нервные волокна, заканчивающиеся гроздъевидными окончаниями на мышечных волокнах с ядерной цепочкой. На концах интрафузальных волокон имеются миофибриллы и к ним подходят двигательные нервные окончания. Сокращения интрафузальных волокон не обладают большой силой и не суммируются с остальными (экстрафузальными) волокнами мышцы.

ФУНКЦИЯ нервно-мышечных веретен заключается в восприятии скорости и силы растяжения мышцы. Если сила растяжения такова, что угрожает разрывом мышцы, то на сокращающиеся мышцы-антогонисты от этих окончаний рефлекторно поступают тормозные импульсы.

СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ развивается из переднего отдела висцеральных листков спланхнотома. Из этих листков выделяются 2 миоэпикардиальных пластинки: правая и левая. Клетки миоэпикардиальных пластинок дифференцируются в двух направлениях: из одних развивается мезотелий, покрывающий эпикард, из других - кардиомиоциты пяти разновидностей;

сократительные

пейсмекерные

проводящие

промежуточные

секреторные, или эндокринные

СТРОЕНИЕ КАРДИОМИОЦИТОВ . Кардиомиоциты имеют цилиндрическую форму, длиной 50-120 мкм, диаметром 10-20 мкм. Кардиомиоциты соединяются концами друг с другом и образуют функциональные сердечные мышечные волокна. Места соединения кардиомиоцитов называются вставочными дисками (discus intercalatus). В дисках имеются интердигитации, десмосомы, места прикрепления актиновых филаментов и нексусы. Через нексусы происходит обмен веществ между кардиомиоцитами.

Снаружи кардиомиоциты покрыты сарколеммой, состоящей из наружной (базальной) мембраны и плазмолеммы. От боковых поверхностей кардиомиоцитов отходят отростки, вплетающиеся в боковые поверхности кардиомиоцитов соседнего волокна. Это мышечные анастомозы.

ЯДРА кардиомиоцитов (одно-два), овальной формы, обычно полиплоидные, располагаются в центре клетки. МИОФИБРИЛЛЫ локализованы по периферии. ОРГАНЕЛЛЫ - одни развиты слабо (гранулярная ЭПС, комплекс Гольджи, лизосомы), другие - хорошо (митохондрии, гладкая ЭПС, миофибриллы). В оксифильной ЦИТОПЛАЗМЕ имеются включения миоглобина, гликогена и липидов.

СТРОЕНИЕ МИОФИБРИЛЛ такое же как и в скелетной мышечной ткани. Актиновые филаменты формируют светлый диск (I), разделенный телофрагмой, за счет миозиновых филаментов и концов актиновых образуется диск А (анизотропный), разделенный мезофрагмой. В средней части диска А имеется Н-полоска, ограниченная концами актиновых филаментов.

Волокна сердечной мышцы отличаются от волокон скелетной мускулатуры тем, что состоят они из отдельных клеток - кардиомиоцитов, наличием мышечных анастомозов, центральным расположением ядер (в волокне скелетной мышцы - под сарколеммой), увеличенной толщиной диаметра Т-каналов, так как в их состав входит и плазмолемма и базальная мембрана (в волокнах скелетной мышцы - только плазмолемма).

ПРОЦЕСС СОКРАЩЕНИЯ в волокнах сердечной мышцы осуществляется по такому же принципу, как и волокнах скелетной мышечной ткани.

ПРОВОДЯЩИЕ КАРДИОМИОЦИТЫ характеризуются более толстым диаметром (до 50 мкм), более светлой цитоплазмой, центральным или эксцентричным расположением ядер, малым содержанием миофибрилл, более простым устройством вставочных дисков. В дисках меньше десмосом, интердигитаций, нексусов и мест прикрепления актиновых филаментов.

В проводящих кардиомиоцитах отсутствуют Т-каналы. Проводящие кардиомиоциты могут соединяться друг с другом не только своими концами, но и боковыми поверхностями. ФУНКЦИЯ проводящих кардиомиоцитов заключается в выработке и передаче сократительного импульса на сократительные кардиомиоциты.

ЭНДОКРИННЫЕ КАРДИОМИОЦИТЫ располагаются только в предсердиях, имеют более отростчатую форму, слабо развитые миофибриллы, вставочные диски, Т-каналы. В них хорошо развиты гранулярная ЭПС, комплекс Гольджи и митохондрии, в их цитоплазме имеются гранулы секрета.

ФУНКЦИЯ эндокринных кардиомиоцитов - секреция предсердного натрийуретического фактора (ПНФ), который регулирует сократимость сердечной мышцы, объем циркулирующей жидкости, артериальное давление, диурез.

РЕГЕНЕРАЦИЯ сердечной мышечной ткани только физиологическая, внутриклеточная. При повреждении волокон сердечной мышцы, они не восстанавливаются, а замещаются соединительной тканью (гистотипическая регенерация).

Мышечные ткани объединяет способность к сокращению.

Особенности строения: сократительный аппарат, занимающий значительную часть в цитоплазме структурных элементов мышечной ткани и состоящий из актиновых и миозиновых филаментов, которые формируют органеллы специального назначения –миофибриллы .

Классификация мышечных тканей

1. Морфофункциональная классификация:

1) Поперечнополосатая, или исчерченная мышечная ткань: скелетная и сердечная;

2) Неисчерченная мышечная ткань: гладкая.

2. Гистогенетическая классификация (в зависимости от источников развития):

1) Соматического типа (из миотомов сомитов) – скелетная мышечная ткань (поперечнополосатая);

2) Целомического типа (из миоэпикардиальной пластинки висцерального листка спланхнотома) – сердечная мышечная ткань (поперечнополосатая);

3) Мезенхимного типа (развивается из мезенхимы) – гладкая мышечная ткань;

4) Из кожной эктодермы и прехордальной пластинки – миоэпителиальные клетки желёз (гладкие миоциты);

5) Нейрального происхождения (из нервной трубки) – мионейральные клетки (гладкие мышцы, суживающие и расширяющие зрачок).

Функции мышечной ткани : перемещение тела или его частей в пространстве.

СКЕЛЕТНАЯ МЫШЕЧНАЯ ТКАНЬ

Исчерченная (поперечно-полосатая) мышечная ткань составляет до 40% массы взрослого человека, входит в состав скелетных мышц, мышц языка, гортани и др. Относятся к произвольным мышцам, поскольку их сокращения подчиняются воле человека. Именно эти мышцы задействованы при занятии спортом.

Гистогенез. Скелетная мышечная ткань развивается из клеток миотомов миобластов. Различают головные, шейные, грудные, поясничные, крестцовые миотомы. Они разрастаются в дорзальном и вентральном направлениях. В них рано врастают ветви спинномозговых нервов. Часть миобластов дифференцируется на месте (образуют аутохтонную мускулатуру), а другие с 3 недели внутриутробного развития мигрируют в мезенхиму и, сливаясь друг с другом, образуют мышечные трубки (миотубы ) с крупными центрально ориентированными ядрами. В миотубах происходит дифференцировка специальных органелл миофибрилл. Первоначально они располагаются под плазмолеммой, а затем заполняют большую часть миотубы. Ядра смещаются к периферии. Клеточные центры и микротрубочки исчезают, грЭПС значительно редуцируется. Такая многоядерная структура называется симпласт , а для мышечной ткани – миосимпласт . Часть миобластов дифференцируется в миосателлитоциты, которые располагаются на поверхности миосимпластов и впоследствии принимают участие в регенерации мышечной ткани.

Строение скелетной мышечной ткани

Рассмотрим строение мышечной ткани на нескольких уровнях организации живого: на органном уровне (мышца как орган), на тканевом (непосредственно мышечная ткань), на клеточном (строение мышечного волокна), на субклеточном (строение миофибриллы) и на молекулярном уровне (строение актиновых и миозиновых нитей).

На каритнке:

1 — мышца икроножная (органный уровень), 2 — поперечный срез мышцы (тканевой уровень) — мышечные волокна, между которыми РВСТ: 3 — эндомизий, 4 — нервное волокно, 5 — кровеносный сосуд; 6 — поперечный срез мышечного волокна (клеточный уровень): 7 — ядра мышечного волокна — симпласта, 8 — митохондрия между миофибриллами, синим цветом — саркоплазматический ретикулум; 9 — поперечный срез миофибриллы (субклеточный уровень): 10 — тонкие актиновые нити, 11 — толстые миозиновые нити, 12 — головки толстых миозиновых нитей.

1) Органный уровень: строение мышцы как органа.

Скелетная мышца состоит из пучков мышечных волокон, связанных воедино системой соединительнотканных компонентов. Эндомизий – прослойки РВСТ между мышечными волокнами, где проходят кровеносные сосуды, нервные окончания. Перимизий – окружает 10-100 пучков мышечных волокон. Эпимизий – наружная оболочка мышцы, представлена плотной волокнистой тканью.

2) Тканевой уровень: строение мышечной ткани.

Структурно-функциональной единицей скелетной поперечнополосатой (исчерченной) мышечной ткани является мышечное волокно – цилиндрической формы образование диаметром 50 мкм и длиной от 1 до 10-20 см. Мышечное волокно состоит из 1) миосимпласта (образование его смотри выше, строение – ниже), 2) мелких камбиальных клеток – миосателлитоцитов , прилежащих к поверхности миосимпласта и располагающиеся в углублениях его плазмолеммы, 3) базальной мембраны, которой покрыта плазмолемма. Комплекс плазмолеммы и базальной мембраны называется сарколемма . Для мышечного волокна характерна поперечная исчерченность, ядра смещены на периферию. Между мышечными волокнами – прослойки РВСТ (эндомизий).

3) Клеточный уровень: строение мышечного волокна (миосимпласта).

Термин «мышечное волокно» подразумевает «миосимпласт», поскольку миосимпласт обеспечивает функцию сокращения, миосателлитоциты участвуют только в регенерации.

Миосимпласт , как и клетка, состоит из 3-х компонентов: ядра (точнее множества ядер), цитоплазмы (саркоплазма) и плазмолеммы (которая покрыта базальной мембраной и называется сарколемма). Почти весь объём цитоплазмы заполнен миофибриллами – органеллами специального назначения, органеллы общего назначения: грЭПС, аЭПС, митохондрии, комплекс Гольджи, лизосомы, а также ядра смещены на периферию волокна.

В мышечном волокне (миосимпласте) различают функциональные аппараты: мембранный , фибриллярный (сократительный) и трофический .

Трофический аппарат включает ядра, саркоплазму и цитоплазматические органеллы: митохондрии (синтез энергии), грЭПС и комплекс Гольджи (синтез белков – структурных компонентов миофибрилл), лизосомы (фагоцитоз изношенных структурных компонентов волокна).

Мембранный аппарат : каждое мышечное волокно покрыто сарколеммой, где различают наружную базальную мембрану и плазмолемму (под базальной мембраной), которая образует впячивания (Т -трубочки). К каждой Т -трубочке примыкают по две цистерны триаду : две L -трубочки (цистерны аЭПС) и одна Т -трубочка (впячивание плазмолеммы). В цистернах аЭПС концентрируются Са 2+ , необходимый при сокращении. К плазмолемме снаружи прилежат миосателлитоциты. При повреждении базальной мембраны запускается митотический цикл миосателлитоцитов.

Фибриллярный аппарат .Большую часть цитоплазмы исчерченных волокон занимают органеллы специального назначения – миофибриллы, ориентированы продольно, обеспечивающие сократительную функцию ткани.

4) Субклеточный уровень: строение миофибриллы.

При исследовании мышечных волокон и миофибрилл под световым микроскопом, отмечается чередование в них темных и светлых участков – дисков. Темные диски отличаются двойным лучепреломлением и называются анизотропными дисками, или А - дисками. Светлые диски не обладают двойным лучепреломлением и называются изотропными, или I -дисками.

В середине диска А имеется более светлый участок – Н -зона, где содержатся только толстые нити белка миозина. В середине Н -зоны (значит и А -диска) выделяется более темная М -линия, состоящая из миомезина (необходим для сборки толстых нитей и их фиксации при сокращении). В середине диска I расположена плотная линия Z , которая построена из белковых фибриллярных молекул. Z -линия соединена с соседними миофибриллами с помощью белка десмина, и поэтому все названные линии и диски соседних миофибрилл совпадают и создается картина поперечнополосатой исчерченности мышечного волокна.

Структурной единицей миофибриллы является саркомер (S ) это пучок миофиламентов заключенный между двумя Z -линиями. Миофибрилла состоит из множества саркомеров. Формула, описывающая структуру саркомера:

S = Z 1 + 1/2 I 1 + А + 1/2 I 2 + Z 2

5) Молекулярный уровень: строение актиновых и миозиновых филаментов .

Под электронным микроскопом миофибриллы представляют агрегаты из толстых, или миозиновых , и тонких, или актиновых , филаментов. Между толстыми филаментами располагаются тонкие филаменты (диаметр 7-8 нм).

Толстые филаменты, или миозиновые нити, (диаметр 14 нм, длина 1500 нм, расстояние между ними 20-30 нм) состоят из молекул белка миозина, являющимся важнейшим сократительным белком мышцы, по 300-400 молекул миозина в каждой нити. Молекула миозина – это гексамер, состоящий из двух тяжелых и четырех легких цепей. Тяжелые цепи представляют собой две спирально закрученные полипептидные нити. Они несут на своих концах шаровидные головки. Между головкой и тяжелой цепью находится шарнирный участок, с помощью которого головка может изменять свою конфигурацию. В области головок – легкие цепи (по две на каждой). Молекулы миозина уложены в толстой нити таким образом, что их головки обращены наружу, выступая над поверхностью толстой нити, а тяжелые цепи образуют стержень толстой нити.

Миозин обладает АТФ-азной активностью: высвобождающаяся энергия используется для мышечного сокращения.

Тонкие филаменты, или актиновые нити, (диаметр 7-8 нм), образованы тремя белками: актином, тропонином и тропомиозином. Основным по массе белком является актин, который образует спираль. Молекулы тропомиозина располагаются в желобке этой спирали, молекулы тропонина располагаются вдоль спирали.

Толстые нити занимают центральную часть саркомера – А -диск, тонкие занимают I - диски и частично входят между толстыми миофиламентами. Н -зона состоит только из толстых нитей.

В покое взаимодействие тонких и толстых нитей (миофиламентов) невозможно, т.к. миозин-связывающие участки актина заблокированы тропонином и тропомиозином. При высокой концентрации ионов кальция конформационные изменения тропомиозина приводят к разблокированию миозин-связывающих участков молекул актина.

Двигательная иннервация мышечного волокна . Каждое мышечное волокно имеет собственный аппарат иннервации (моторная бляшка) и окружено сетью гемокапилляров, располагающихся в прилежащей РВСТ. Этот комплекс называется мион. Группа мышечных волокон, которые иннервируются одним мотонейроном, называется нервно-мышечной единицей. Мышечные волокна в этом случае могут располагаться не рядом (одно нервное окончание может контролировать от одного до десятков мышечных волокон).

При поступлении нервных импульсов по аксонам двигательных нейронов происходит сокращение мышечного волокна .

Сокращение мышцы

При сокращении мышечные волокна укорачиваются, но длина актиновых и миозиновых филаментов в миофибриллах не изменяется, а происходит их движение друг относительно друга: миозиновые нити вдвигаются в пространства между актиновыми а, актиновые – между миозиновыми. В результате этого уменьшается ширина I -диска, H -полоски и уменьшается длина саркомера; ширина А -диска не изменяется.

Формула саркомера при полном сокращении:S = Z 1 + А + Z 2

Молекулярный механизм мышечного сокращения

1. Прохождение нервного импульса через нервно-мышечный синапс и деполяризация плазмолеммы мышечного волокна;

2. Волна деполяризации проходит по Т -трубочкам (впячивания плазмолеммы) до L -трубочек (цистерны саркоплазматического ретикулума);

3. Открытие кальциевых каналов в саркоплазматическом ретикулуме и выход ионов Са 2+ в саркоплазму;

4. Кальций диффундирует к тонким нитям саркомера, связывается с тропонином С, приводя к конформационным изменениям тропомиозина и освобождая активные центры для связывания миозина и актина;

5. Взаимодействие миозиновых головок с активными центрами на молекуле актина с образованием актино-миозиновых «мостиков»;

6. Миозиновые головки «шагают» по актину, образуя в ходе перемещения новые связи актина и миозина, при этом актиновые нити подтягиваются в пространство между миозиновыми нитями к M -линии, сближая две Z -линии;

7. Расслабление: Са 2+ -АТФ-аза саркоплазматического ретикулума закачивает Са 2+ из саркоплазмы в цистерны. В саркоплазме концентрация Са 2+ становится низкой. Разрываются связи тропонина С с кальцием, тропомиозин закрывает миозин-связывающие участки тонких нитей и препятствует их взаимодействию с миозином.

Каждое движение головки миозина (присоединение к актину и отсоединение) сопровождается затратой энергии АТФ.

Чувствительная иннервация (нервно-мышечные веретена). Интрафузальные мышечные волокна вместе с чувствительными нервными окончаниями формируют нервно-мышечные веретена, являющиеся рецепторами скелетной мышцы. Снаружи сформирована капсула веретена. При сокращении поперечно-полосатых (исчерченных) мышечных волокон изменяется натяжение соединительно-тканной капсулы веретена и соответственно изменяется тонус интрафузальных (расположенных под капсулой) мышечных волокон. Формируется нервный импульс. При избыточном растяжении мышцы возникает чувство боли.

Классификация и типы мышечных волокон

1. По характеру сокращения: фазные и тонические мышечные волокна. Фазные способны осуществлять быстрые сокращения, но не могут длительно удерживать достигнутый уровень укорочения. Тонические мышечные волокна (медленные) обеспечивают поддержание статического напряжения или тонуса, что играет роль в сохранения определённого положения тела в пространстве.

2. По биохимическим особенностям и цвету выделяют красные и белые мышечные волокна . Цвет мышцы обусловлен степенью васкуляризации и содержанием миоглобина. Характерной особенностью красных мышечных волокон является наличие многочисленных митохондрий, цепи которых располагаются между миофибриллами. В белых мышечных волокнах митохондрий меньше и они располагаются равномерно в саркоплазме мышечного волокна.

3. По типу окислительного обмена : оксидативные, гликолитические и промежуточные . Идентификация мышечных волокон основана на выявлении активности фермента сукцинатдегидрогеназы (СДГ), которая является маркером для митохондрий и цикла Кребса. Активность этого фермента свидетельствует о напряженности энергетического метаболизма. Выделяют мышечные волокна А -типа (гликолитические) с низкой активностью СДГ, С -тип (оксидативные) с высокой активностью СДГ. Мышечные волокна В -типа занимают промежуточное положение. Переход мышечных волокон от А -типа в С -тип маркирует изменения от анаэробного гликолиза к метаболизму, зависящему от кислорода.

У спринтеров (спортсменов, когда нужен быстрое недолгое сокращение, культуристов) тренировки и питание направлено на развитие гликолитических, быстрых, белых мышечных волкон : в них много запасов гликогена и энергия добывается преимущественно анаэолбным путём (белое мясо у курицы). У стайеров (спортсменов — марафонцев, в тех видах спорта, где необходима выносливость) преобладают оксидативные, медленные, красные волокна в мышцах — в них много митохондрий для аэробного гликолиза, кровеносных сосудов (нужен кислород).

4. В исчерченных мышцах различают два вида мышечных волокон: экстрафузальные , которые преобладают и обуславливают собственно сократительную функцию мышцы и интрафузальные , входящие в состав проприоцепторов – нервно-мышечных веретен.

Факторами, определяющими структуру и функцию скелетной мышцы являются влияние нервной ткани, гормональное влияние, местоположение мышцы, уровень васкуляризации и двигательной активности.

СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ

Сердечная мышечная тканьнаходится в мышечной оболочке сердца (миокард) и в устьях связанных с ним крупных сосудов. Имеет клеточный тип строения и основным функциональным свойством служит способность к спонтанным ритмическим сокращениям (непроизвольные сокращения).

Развивается из миоэпикардиальной пластинки (висцеральный листок спланхнотома мезодермы в шейном отделе), клетки которой размножаются митозом, а потом дифференцируются. В клетках появляются миофиламенты, которые далее формируют миофибриллы.

Строение . Структурная единица сердечной мышечной ткани – клетка кардиомиоцит. Между клетками находятся прослойки РВСТ с кровеносными сосудами и нервами.

Типы кардиомиоцитов : 1) типичные (рабочие, сократительные), 2) атипичные (проводящие), 3) секреторные .

Типичные кардиомиоциты

Типичные (рабочие, сократительные) кардиомиоциты – клетки цилиндрической формы, длиной до 100-150 мкм и диаметром 10-20 мкм. Кардиомиоциты образуют основную часть миокарда, соединены друг с другом в цепочки основаниями цилиндров. Эти зоны называют вставочными дисками , в которых выделяют десмосомальные контакты и нексусы (щелевидные контакты). Десмосомы обеспечивают механическое сцепление, которое препятствует расхождению кардиомиоцитов. Щелевидные контакты способствуют передаче сокращения от одного кардиомиоцита к другому.

Каждый кардиомиоцит содержат одно или два ядра, саркоплазму и плазмолемму, окружённую базальной мембраной. Различают функциональные аппараты, такие же, как в мышечном волокне: мембранный , фибриллярный (сократительный), трофический, а также энергетический .

Трофический аппарат включает ядро, саркоплазму и цитоплазматические органеллы: грЭПС и комплекс Гольджи (синтез белков – структурных компонентов миофибрилл), лизосомы (фагоцитоз структурных компонентов клетки). Кардиомиоциты, как и олокна скелетной мышечной ткани, характеризуются наличием в их саркоплазме железосодержащего кислород-связывающего пигмента миоглобина, придающего им красный цвет и сходного по строению и функции с гемоглобином эритроцитов.

Энергетический аппарат представлен митохондриями и включениями, расщепление которых обеспечивает получение энергии. Митохондрии многочисленны, лежат рядами между фибриллами, у полюсов ядра и под сарколеммой. Энергия, необходимая кардиомиоцитам, получается путём расщепления: 1) основного энергетического субстрата этих клеток – жирных кислот , которые депонируются в виде триглицеридов в липидных каплях; 2) гликогена, находящегося в гранулах, расположенных между фибриллами.

Мембранный аппарат : каждая клетка покрыта оболочкой, состоящей из комплекса плазмолеммы и базальной мембраны. Оболочка образует впячивания (Т -трубочки). К каждой Т -трубочке примыкает одна цистерна (в отличие от мышечного волокна – там 2 цистерны) саркоплазматического ретикулума (видоизменённая аЭПС), образуя диаду : одна L -трубочка (цистерна аЭПС) и одна Т -трубочка (впячивание плазмолеммы). В цистернах аЭПС ионы Са 2+ накапливаются не так активно, как в мышечных волокнах.

Фибриллярный (сократительный) аппарат .Большую часть цитоплазмы кардиомиоцита занимают органеллы специального назначения – миофибриллы, ориентированы продольно и расположенные по периферии клетки.Сократительный аппарат рабочих кардиомиоцитовсходен со скелетными мышечными волокнами. При расслаблении, ионы кальция выделяются в саркоплазму с низкой скоростью, что обеспечивает автоматизм и частые сокращения кардиомиоцитов. Т -трубочки широкие и образуют диады (одна Т -трубочка и одна цистерна сети), которые сходятся в области Z -линии.

Кардиомиоциты, связываясь с помощью вставочных дисков, образуют сократительные комплексы, которые способствуют синхронизации сокращения, между кардиомиоцитами соседних сократительных комплексов образуются боковые анастомозы.

Функция типичных кардиомиоцитов : обеспечение силы сокращения сердечной мышцы.

Проводящие (атипичные) кардиомиоциты обладают способностью к генерации и быстрому проведению электрических импульсов. Они образуют узлы и пучки проводящей системы сердца и разделяются на несколько подтипов: пейсмекеры (в синоатриальном узле), переходные (в атрио-вентрикулярном узле) и клетки пучка Гиса и волокон Пуркинье. Проводящие кардиомиоциты характеризуются слабым развитием сократительного аппарата, светлой цитоплазмой и крупными ядрами. В клетках нет Т-трубочек и поперечной исчерченности, поскольку миофибриллы расположены неупорядоченно.

Функция атипичных кардиомиоцитов – генерация импульсов и передача на рабочие кардиомиоциты, обеспечивая автоматизм сокращения миокарда.

Секреторные кардиомиоциты

Секреторные кардиомиоцитынаходятся в предсердиях, преимущественно в правом; характеризуются отростчатой формой и слабым развитием сократительного аппарата. В цитоплзме, вблизи полюсов ядра – секреторные гранулы, содержащие натриуретический фактор, или атриопептин (гормон, регулирующий артериальное давление). Гормон вызывает потерю натрия и воды с мочой, расширение сосудов, снижение давления, угнетение секреции альдостерона, кортизола, вазопрессина.

Функция секреторных кардиомиоцитов : эндокринная.

Регенерация кардиомиоцитов. Для кардиомиоцитов характерна только внутриклеточная регенерация. Кардиомиоциты не способны к делению, у них отсутствуют камбиальные клетки.

ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ

Гладкая мышечная ткань образует стенки внутренних полых органов, сосудов; характеризуется отсутствием исчерченности, непроизвольными сокращениями. Иннервация осуществляется вегетативной нервной системой.

Структурно-функциональная единица неисчерченной гладкой мышечной ткани – гладкая мышечная клетка (ГМК), или гладкий миоцит. Клетки имеют веретенообразную форму длиной 20-1000 мкм и толщиной от 2 до 20 мкм. В матке клетки имеют вытянутую отростчатую форму.

Гладкий миоцит

Гладкий миоцит состоит из расположенного в центре ядра палочковидной формы, цитоплазмы с органеллами и сарколеммы (комплекс плазмолеммы и базальной мембраны). В цитоплазме у полюсов находится комплекс Гольджи, много митохондрий, рибосом, развит саркоплазматический ретикулум. Миофиламенты расположены косо или вдоль продольной оси. В ГМК актиновые и миозиновые филаменты не формируют миофибрилл. Актиновых нитей больше и они прикрепляются к плотным тельцам, которые образованы специальными сшивающими белками. Рядом с актиновыми нитями располагаются мономеры миозина (микромиозин). Обладая разной длиной, они значительно короче тонких нитей.

Сокращение гладких мышечных клеток осуществляется при взаимодействии актиновых филаментов и миозина. Сигнал, идущий по нервным волокнам, обуславливает выделение медиатора, что изменяет состояние плазмолеммы. Она образует колбовидные впячивания (кавеолы), где концентрируются ионы кальция. Сокращение ГМК индуцируется притоком ионов кальция в цитооплазму: кавеолы отшнуровываются и вместе с ионами кальция попадают в клетку. Это приводит к полимеризации миозина и взаимодействию его с актином. Актиновые нити и плотные тельца сближаются, усилие передается на сарколемму и ГМК укорачивается. Миозин в гладких миоцитах способен взаимодействовать с актином только после фосфорилирования его легких цепей особым ферментом – киназой легких цепей. После прекращения сигнала ионы кальция покидают кавеолы; миозин деполяризуется, теряет сродство к актину. В результате комплексы миофиламентов распадаются; сокращение прекращается.

Особые типы мышечных клеток

Миоэпителиальные клетки являются производными эктодермы, не имеют исчерченности. Окружают секреторные отделы и выводные протоки желез (слюнных, молочных, слезных). С железистыми клетками они связаны десмосомами. Сокращаясь, способствуют выделению секрета. В концевых (секреторных) отделах форма клеток отросчатая, звездчатая. Ядро в центре, в цитоплазме, преимущественно в отростках локализованы миофиламенты, которые образуют сократительный аппарат. В этих клетках есть и цитокератиновые промежуточные филаменты, что подчеркивает их сходство с эпителиоцитами.

Мионейральные клетки развиваются из клеток наружного слоя глазного бокала и образуют мышцу, суживающую зрачок и мышцу, расширяющую зрачок. По строению первая мышца сходна с ГМК мезенхимного происхождения. Мышца, расширяющая зрачок образована отростками клеток, располагающимися радиально, а ядросодержащая часть клетки находится между пигментным эпителием и стромой радужки.

Миофибробласты относятся к рыхлой соединительной ткани и представляют собой видоизмененные фибробласты. Они проявляют свойства фибробластов (синтезируют межклеточное вещество) и гладких миоцитов (обладают выраженными сократительными свойствами). Как вариант этих клеток можно рассматривать миоидные клетки в составе стенки извитого семенного канальца яичка и наружного слоя теки фолликула яичника. При заживлении раны часть фибробластов синтезирует гладкомышечные актины и миозины. Миофибробласты обеспечивают стягивание краёв раны.

Эндокринные гладкие миоциты – это видоизмененные ГМК, представляющие основной компонент юкстагломерулярного аппарата почек. Они находятся в стенке артериол почечного тельца, имеют хорошо развитый синтетический аппарат и редуцированный сократительный. Продуцируют фермент ренин, находящийся в гранулах и попадающий в кровь механизмом экзоцитоза.

Регенерация гладкой мышечной ткани. Гладкие миоциты характеризуются внутриклеточной регенерацией. При повышении функциональной нагрузки происходит гипертрофия миоцитов и в некоторых органах гиперплазия (клеточная регенерация). Так, при беременности гладко-мышечные клетки матки могут увеличиваться в 300 раз.